
Abstract. Equilibrium free-energy cycles relating oxida-
tion and reduction potentials in solution to ionization
potentials and electron affinities in the gas phase are
constructed and the utilities of various levels of theory
for computing particular free-energy changes within
these cycles are discussed within the context of several
examples. Emphasis is placed on the use of quantum-
mechanical continuum solvation models to compute free
energies of solvation. Key systems discussed include
quinones, substituted anilines, substituted phenols, and
reductive dechlorination reactions.
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Background and introduction

Many chemical reactions include one or more discrete
steps where a single electron is transferred from one
reacting partner to another. When the reacting partners
are reasonably strongly coupled to one another, for
example, two organometallic species sharing a common
ligand, this process is referred to as an ‘‘inner-sphere’’
electron transfer. Conversely, an ‘‘outer-sphere’’ elec-
tron-transfer event is one where no ligand binds directly

to both the donor and acceptor, and the electron effec-
tively ‘‘hops’’ or tunnels from one species to the other.

Electron-transfer reactions play a major role in
biology [1]. For instance, a photoinitiated electron-
transfer event is the first step in photosynthesis. In
addition, oxidative phosphorylation, the primary
metabolic pathway for energy generation in higher
organisms, includes electron-transfer cascades
mediated by cytochromes. Electron-transfer reactions
are similarly important in environmental chemistry,
where many remedial strategies for cleaning up
contaminated soils and other media involve oxidations
or reductions of contaminants of anthropogenic origin
that are initiated by either chemical or biological
means [2, 3].

Because the electron is charged, its sudden translo-
cation profoundly affects the charge distribution in a
reacting system and, as such, electron-transfer reactions
tend to be very sensitive to condensed-phase effects, for
example, solvation [4]. Attempts to model the energetics
of such reactions thus face a number of challenges. First,
there are the potential difficulties that may arise in the
modeling of open-shell species. Second, there is the need
to accurately model the very strong interactions that a
surrounding solvent will have with reactant and product
ions. And, finally, if one is interested in the kinetics of
electron transfer, one must adequately account for the
different timescales over which various solute and sol-
vent relaxations to equilibrium take place during and
following the generally nonequilibrium electron-transfer
event.

In this paper, we describe computational protocols
for use in modeling electron-transfer reactions in con-
densed phases. In all instances the medium is repre-
sented by the influence of a surrounding dielectric
continuum, and we discuss the advantages and disad-
vantages of such an approach for different problems. We
both review prior work and present some new calcula-
tions for previously unreported systems.
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Computational protocols

We focus on the calculation of equilibrium oxidation
and reduction potentials. To define a computational
protocol, it is helpful to refer to one of the thermo-
dynamic cycles, either oxidative or reductive, illus-
trated in Fig. 1. These cycles make clear the
relationship between the condensed-phase free-energy
changes associated with oxidation or reduction (the
bottom legs of the illustrated cycles) and the relevant
gas-phase processes.

In the gas phase, the analog to an absolute oxidation
potential is an ionization potential (IP) and the analog
to a reduction potential is an electron affinity (EA). By
convention, however, IPs and EAs are typically reported
as enthalpy changes at 0 K. In order to compute the free
energy of ionization or electron attachment at 298 K (a
typical temperature for the measurement of condensed-
phase oxidation and reduction potentials), the 298 K
thermal contributions to the free energy must be com-
puted. With this upper leg of the free-energy cycle in
hand, it is clear that the remaining connection between
the gas phase and the condensed phase is simply the
differential solvation free energies of the oxidized and
reduced species for the process under consideration.
Note that, by electrochemical convention, the free elec-
tron is always defined to be a gas-phase species for
purposes of assigning absolute oxidation and reduction
free energies.

Thus, in order to compute the bottom leg of the free-
energy cycle, it is sufficient to compute a gas-phase free-
energy change and a differential solvation free energy.
Insofar as this net free-energy change in solution may be
regarded as deriving from different components, it is
worthwhile to note that there is not necessarily any
requirement to employ identical levels of modeling in
order to compute each component to an acceptable level
of accuracy.

If we consider the gas-phase leg of the free-energy
cycle, it seems clear that, for highest accuracy, one wants
to carry out electronic structure calculations with as

complete a level of theory as one can afford (i.e.,
attempting to converge the calculation with respect to
electron correlation and a one-electron basis set).
However, in order to compute the thermal contributions
to free energy, it may well be possible to achieve
acceptable accuracy with a considerably more efficient
level of theory. The thermal contributions are most
typically computed by assuming that all reacting species
have partition functions characteristic of ideal gases
within the rigid-rotator and harmonic-oscillator
assumptions, in which case all that is required is that
vibrational frequencies be determined for a molecular
structure optimized at the same level of theory as that
employed for the frequency calculation [5]. In favorable
instances, of course, the IP may be known experimen-
tally, in which case the computational burden for the
gas-phase free-energy change reduces to computing the
thermal contributions.

In order to compute equilibrium free energies of
solvation for all species, self-consistent reaction field
(SCRF) models based on a continuum representation
of the solvent offer a particularly efficient means to
achieve accuracies within a few tenths of a kilocalorie
per mole for neutral species; the error is larger by
approximately an order of magnitude for charged
species (note that this error is about that associated
with the experimental measurement of such solvation
free energies) [5, 6]. Equilibrium solvation free energies
are sufficient to model equilibrium oxidation and
reduction free energies as these quantities are defined
to refer to equilibrium conditions. In evaluating elec-
tron-transfer kinetics and in some other instances,
however, it proves necessary to evaluate nonequilibri-
um solvation free energies [7]; such situations are
outside the scope of the present article, although
continuum solvation models can indeed be applied to
such situations [4, 6, 8–15]. In addition, we will not
discuss in any way the modeling of the dynamical
events associated with electron transfer at an electrode
surface, the complications associated with overpoten-
tials for irreversible processes, the electrode double-

Fig. 1. Thermodynamic cycles used in the computation of equilibrium oxidation and reduction potentials
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layer, electrolyte concentration effects, junction
potentials, or other electrochemical phenomena that
would be more appropriately modeled with explicit
solvation models.

The absolute equilibrium oxidation or reduction free
energy computed in the fashion just outlined either
generates or consumes a free electron. In practice,
however, free electrons are not actual participants in
most reactions. Instead, the electrons are consumed, or
generated, respectively, by another half-reaction. A
typical half reaction is that which defines the standard
hydrogen electrode (SHE)

H +
aqð Þ þ e�gð Þ !

1

2
H2 gð Þ: ð1Þ

Another use of the SHE half reaction is as a reference
for putting oxidation and reduction potentials on a
convenient scale. On the basis of experiment, the free-
energy change associated with Eq. (1) is )4.36 eV [16].
To compute a given oxidation or reduction free energy
relative to the SHE, one subtracts or adds, respectively,
4.36 eV to the free-energy change computed from the
thermodynamic cycles in Fig. 1 per electron transferred.

Finally, relative oxidation and reduction potentials,
Eo, are defined as

Eo ¼ �DGo

nF
; ð2Þ

where DGo is the free-energy change relative to the SHE,
n is the number of electrons consumed or generated in
the half-reaction of interest, and F is the Faraday con-
stant (the negative of the charge on 1 mol of electrons).
The potential is expressed in units of volts (for free
energies expressed in some typical units, F is equal to
23.061 kcal mol)1 V)1 or 96.485 kJ mol)1 V)1).

Applications to reversible redox processes

Fully computational predictions

Charles-Nicolas et al. [17] presented one of the first
efforts applying the protocols just outlined; they
focused on the one-electron oxidation potentials of
eight polyaromatic hydrocarbons in dimethylforma-
mide (DMF). To compute the gas-phase free-energy
change, they carried out semiempirical parameterized
model 3 (PM3) [18] calculations and assumed that
they could neglect additional thermal terms. They
further assumed that the differential free energies of
solvation in DMF could be approximated by differ-
ential free energies of aqueous solvation computed
using the quantum-mechanical (QM) generalized Born
(GB) SCRF model PM3-SM3 [19]. Within the context
of these several approximations, they achieved a mean
unsigned error (MUE) in their predictions of 0.078 V.
Harada et al. [20] achieved similar accuracy for a
larger set of 18 polyaromatic hydrocarbons, but in

their case they added differential solvation free ener-
gies in acetonitrile computed via a QM GB model to
experimental IPs.

Later, Raymond et al. [21] considered the one-elec-
tron aqueous reduction potentials of p-benzoquinone
and seven of its chlorinated or methylated congeners.
For all eight molecules, experimental EAs are available,
and Raymond et al. found that EAs computed at the
B3LYP density functional level [22–25] using the 6-
311G(3d,p) basis set [26] had a MUE of 0.08 eV. As this
error is below the experimental error reported for the
individual EAs, Raymond et al. considered the level of
electronic structure theory to be validated. They ignored
thermal contributions, noting that they typically con-
tribute less than 0.04 eV to the gas-phase reduction free
energy [27]. They computed differential solvation free
energies from classical simulations with explicit solvent
using free-energy perturbation (FEP) [5, 28]. Over the
five cases where experimental one-electron reduction
potentials were available, their computed values had a
MUE of 0.08 V.

Insofar as FEP calculations of differential solvation
free energies are computationally expensive, we exam-
ined the degree to which QM continuum solvation
models might prove useful in this system (work not
previously published). Using differential solvation free
energies from the QM GB SCRF model SM5.4A [29] in
place of the FEP values of Raymond et al., we obtained
a MUE of 0.05 V in comparison with experiment for the
same five quinones. Insofar as the continuum solvation
calculations require about 4 orders of magnitude less
time to complete than the FEP calculations, this repre-
sents a fairly strong case for the utility of continuum
solvent models in such computational schemes.

Baik and Friesner [30] recently assessed the utility of
a computational protocol for eight reversible reductions
of six different organic molecules in either DMF or
acetonitrile solvent. The molecules together with their
results are provided in Fig. 2. Note that the values in
Fig. 2 do not correspond precisely to those published in
their paper [30]. They reported values relative to the
standard calomel electrode, which has a standard po-
tential 0.2412 V more negative than the SHE [31], and
they also employed a value of 4.43 eV for the oxidation
free energy of the SHE [32, 33]; this older value has been
superseded by 4.36 eV on the basis of recent, more
accurate determinations of the free energy of aqueous
solvation of the proton [16, 34, 35]. All values in Fig. 2
are relative to the SHE and employ an oxidation free
energy of 4.36 eV for the SHE.

The computed values in Fig. 2 were arrived at by
combining electronic energies computed at the B3LYP/
cc-pVTZ(-f)++//B3LYP/6-31G(d,p), thermal contribu-
tions computed at the B3LYP/6-31G(d,p) level, and
solvation free energies computed from solution of a
SCRF Poisson equation [36, 37]. This combination gives
a MUE of 0.12 V, which may be compared with the
experimental error in measurement, taken in every case
to be 0.04 V. Baik and Friesner noted that their errors
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increased by 0.05 V if the diffuse functions were
removed from the polarised valence-triple-f basis set in
the single-point calculations, and by 0.2 V if the smaller
6-31G(d,p) basis set was used for the electronic energies
as well as for geometries and thermal contributions.

Predictions for sets of related molecules: quinones

While the accuracy in the purely ab initio prediction of
reduction potentials by Baik and Friesner is impressive,
the computational cost of the protocol employed is
considerable. In instances where such levels of theory
may be prohibitively expensive, and where the goal is to
understand variation in redox potentials over a series of
chemically similar substrates, an alternative is to rely on
cancellation of errors in the computation of relative re-
dox potentials within the series. Reynolds and cowork-
ers [38–42] provided the first comprehensive reports of
such an approach, focusing on the two-electron reduc-
tion potentials of various quinones. Thus, they com-
puted the free-energy change for the isodesmic reaction

Q0H2 aqð Þ þ Q aqð Þ ! Q0aqð Þ þ QH2 aqð Þ ð3Þ

and then computed Eo
Q0 as

Eo
Q0 ¼

DGo

2F
þ Eo

Q; ð4Þ

where DGo is the free energy change for Eq. (3) and
Eo

Q is the experimental aqueous two-electron reduction
potential for p-benzoquinone, 0.6998 V. In most cases,
Reynolds and coworkers computed differential solva-
tion free energies from FEP. They explored various
levels of electronic structure theory for electronic
energies and thermal contributions. In an initial study
comparing p-benzoquinone with o-benzoquinone [38],
they found Hartree–Fock (HF) and second-order
perturbation theory (MP2) calculations using the 3-

21G and 6-31G(d) basis sets [5, 26] all to predict the
same free-energy change for Eq. (3) to within 0.1 eV
(this relatively weak dependence on basis-set size and
level of theory is presumably obtained at least in part
because Eq. 3 does not involve any charged species).
Combining their MP2/6-31G(d) electronic energies
with their FEP differential solvation free energies and
thermal contributions computed at the semiempirical
Austin model 1 (AM1) [43] level, they predicted a
potential difference of )0.072 V, in quite good agree-
ment with an experimental difference of )0.092 V (the
statistical error in the FEP differential solvation free
energies was estimated to be 0.013 V [38]). The same
protocol provided similar accuracies in predicting the
relative two-electron reduction potentials of 2-methyl-
p-benzoquinone and 2,5-dimethyl-p-benzoquinone [39]
and a somewhat larger error for 2,3-dicyano-p-benzo-
quinone [40], as illustrated in Fig. 3.

Fig. 2. Computed and experimental (in
parentheses) one-electron reduction potentials
relative to the standard hydrogen electrode
(SHE). See the text for details of the
computation

Fig. 3. Computed and experimental (in parentheses) aqueous two-
electron reduction potentials relative to the SHE. See the text for
details of the computation
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In a subsequent report, Reynolds [42] reconsidered
these molecules and also a set of naphthoquinones. In
that study, he noted that a Becke–Vosko–Wilk–Nussair
density functional [22, 44] calculation gave slightly more
accurate results than the MP2 method for electronic
energies, and the greater efficiency of QM continnum
solvation models compared with FEP was emphasized.
Using PM3-SM3 [19] to compute solvation free energies
Reynolds achieved a MUE of about 0.03 V over his full
test set of quinones.

Jalali-Heravi and coworkers [45, 46] carried out ra-
ther similar studies to those of Reynolds and coworkers
for quinones in aqueous solution, and came to overall
similar conclusions. In more recent work, they went on
to examine the two-electron reduction potentials of nine
substituted quinones relative to 1,4-naphthoquinone in
acetonitrile [47]. Using electronic energies and thermal
contributions computed at the HF/6-31G(d,p) level and
differential solvation free energies computed from the
polarized continuum model (PCM) [48] with additional
approximations for cavity, dispersion, and repulsion
contributions, they obtained a MUE of 0.19 V in the
predicted potentials.

Predictions for sets of related molecules: anilines

We previously reported computations of the aqueous
one-electron oxidation potentials for aniline and 30
monosubstituted and disubstituted anilines employing
many different levels of theory for the gas-phase and
SCRF components of the calculations [49]. That work
employed the older value for the absolute oxidation
potential of the normal hydrogen electrode (NHE),
4.44 V [33], instead of the now preferred value of 4.36 V
[16]. In addition, that prior work was subject to two
errors. First, the use of an incorrect standard state for
the gas-phase electron led to an error of 0.035 V in all
computed potentials. In addition, the experimental data
were reported as being relative to the SHE. However, the
reported values were actually relative to the standard
calomel electrode, which has a potential of 0.27 V rela-
tive to the SHE. Our summary of our prior results here
will smaller correcting for all of these issues. This leads
to smaller errors in most cases, and is the source of any

discrepancies between the values noted here and those
presented in the original reference [49].

Our most computationally complete protocol calcu-
lated gas-phase energies at the BPW91 [22, 50] density
functional level with the cc-pVDZ basis set [51], thermal
contributions at the BPW91 level with the MIDI! basis
set [52], and solvation free energies with the QM GB
SCRF SM5.42R/BPW91/DZVP model [53]. This pro-
tocol gave a MUE of 0.24 V for aniline and 12 mono-
substituted anilines, and a MUE of 0.18 V for the three
isomeric nitroanilines and six disubstituted anilines.
When the much more efficient AM1 level is used for the
electronic energies and the QM GB SCRF SM5.4/AM1
model is used for the aqueous solvation free energies, the
MUEs increase; they are 0.49 and 0.58 V over the same
two test sets noted earlier.

An interesting question, however, is the degree to
which such larger errors as those associated with the
semiempirical predictions may be systematic, and thus
correctable given a sufficient number of data to develop
some statistical correlation scheme. Indeed, it is of some
interest to examine whether still simpler correlations
with different experimental or computed data may be
quantitatively useful in the prediction of one-electron
oxidation potentials for anilines. A few likely candidates
include the gas-phase IPs, the aniline pKas, highest
occupied molecular orbital (HOMO) energies from
various levels of theory, and Hammett correlations [54]
with the appropriate Hammett (r) [55] and Brown (r+)
[56, 57] parameters for substituted aromatics. The
quality of linear regressions of the experimental data on
these quantities, as well as on the raw computational
predictions from the BPW91 and AM1 levels, is pro-
vided in Table 1 for the first test set of 13 anilines. All of
the correlations provide fair to excellent agreement with
experiment, as judged by comparison against the null
hypothesis and the results in the previous paragraph.
Least useful are the experimental gas-phase IPs (which
are moreover not available for all molecules) and the
AM1 HOMO energies. Linear regression on the raw
predicted oxidation potentials provides the highest
accuracy, and interestingly after the regression there is
little difference in quality between the expensive density
functional model and the very inexpensive semiempirical
model. Moreover, the AM1 regression model has a slope

Table 1. Linear regressions of
aqueous aniline oxidation
potentials on other quantities.
MUE is the mean unsigned
error for the number of data
indicated

aThe null hypothesis is not a
linear regression, but rather as-
sumes every oxidation potential
to be 0.92 V

Correlating variable No. of data Slope Intercept R MUE (V)

Experimental ionization potential (eV) 9 0.23 –0.93 0.79 0.06
pKa 13 )0.12 1.38 0.91 0.04
Hammett r 9 0.47 0.86 0.96 0.03
Brown r+ 8 0.32 0.90 0.98 0.02
AM1 HOMO 13 )0.24 )1.09 0.71 0.07
SM5.42R/AM1 HOMO 13 )0.81 )5.98 0.90 0.04
BPW91/MIDI! HOMO 13 )0.40 )0.95 0.85 0.05
SM5.42R/BPW91/MIDI! HOMO 13 )0.56 )1.68 0.89 0.04
AM1+SM5.4A 13 1.03 )0.53 0.97 0.03
BPW91+SM5.42R 13 0.62 0.50 0.99 0.02
Null hypothesis 13 a 0.92 a 0.11
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near unity, suggesting that the model is accounting for
substitution effects in a physical way. The slope for the
density functional theory (DFT) model is substantially
less than unity, which may reflect basis-set limitations
and/or poor performance of the BPW91 functional.

The Hammett correlations give MUEs as low as
those from these latter two computational protocols, but
they are not extensible to cases of multiple substituents
on the aromatic ring. When the AM1 and BPW91
regressions are applied to the computed data for the
nitro-substituted and doubly substituted anilines, MUEs
of 0.09 and 0.10 V, respectively, are obtained. The bulk
of the excess error is associated with the nitroanilines,
whose oxidation potentials are slightly more positive
than any of those used to construct the regression
equation.

Predictions for sets of related molecules: phenols

We now consider the utility of such simple regression
schemes for the prediction of one-electron oxidation
potentials in a different set of molecules, namely phenol

and 23 substituted phenols. The predictions from six dif-
ferent theoretical protocols are compared with experi-
ment in Table 2. In three protocols, we ignore all parts of
the free-energy cycle in Fig. 1 except for the gas-phase
change in electronic energy. With this approximation, we
consider AM1, BPW91/MIDI!, and BPW91/cc-pVDZ.
We also augment each of these levels of theory with a QM
GB SCRF solvation model to compute the differential
free energies of solvation of the neutral and oxidized
species, in particular SM5.42R/AM1 [58], SM5.42R/
BPW91/MIDI! [59], and SM5.42R/BPW91/DZVP [53].

Neglect of differential solvation effects leads to very
large errors in the predicted values. This observation is
unsurprising given that the cationic oxidized species is
expected to have a much more favorable (negative) free
energy of solvation than that of the neutral phenol.
However, while inclusion of differential solvation free
energies does reduce the absolute errors substantially, the
MUEs nevertheless remain in excess of 0.3 V at all levels.

As differential thermal contributions rarely amount
to more than several hundredths of a volt, there would
seem to be some more profound error remaining in the
computational protocol. Given the good performance of

Table 2. Experimental and computed aqueous one-electron oxidation potentials (volts relative to the normal hydrogen electrode) for
substituted phenols. – indicates that no values were computed

Experiment AM1a,b SM5.42R/
AM1a

BPW 91/
MIDI!a,b

SM5.42R/
BPW91/
MIDI!a

BPW91/
ccpVDZa,b

SM5.42R/
BPW91/DZVPa

m-Chlorophenol 1.002 4.483 2.178 – – – –
m-Ethylphenol 0.884 4.165 2.017 3.376 1.263 3.415 1.301
m-Methoxyphenol 0.887 4.074 1.999 3.012 0.992 3.115 1.096
m-Methylphenol 0.875 4.204 2.013 3.433 1.256 3.474 1.297
m-Nitrophenol 1.123 5.014 2.519 4.069 1.747 – –
o-Chlorophenol 0.893 4.418 2.211 3.856 1.652 3.787 1.582
o-Ethylphenol 0.819 4.107 1.964 3.364 1.247 3.392 1.274
o-Hydroxybenzoate 1.113 4.394 2.240 3.490 1.419 3.642 1.570
o-Methoxyphenol 0.724 3.792 1.814 2.800 0.791 2.953 0.944
o-Methylphenol 0.834 4.109 1.948 3.392 1.220 3.431 1.259
o-Nitrophenol 1.114 5.040 2.578 – – – –
o-Phenylphenol 0.831 3.806 2.037 2.910 1.101 2.960 1.151
o-t-Butylphenol 0.820 4.070 2.081 3.159 1.230 3.208 1.279
p-Chlorophenol 0.921 4.274 2.074 3.649 1.430 3.547 1.328
p-Ethylphenol 0.835 4.038 1.920 3.224 1.134 3.269 1.179
p-Ethylphenol 0.835 4.041 1.925 3.224 1.134 3.269 1.179
p-Hydroxyacetophenone 1.059 4.549 2.309 – – – –
p-Hydroxybenzoate 0.984 4.731 2.408 – – – –
p-Methoxyphenol 0.674 3.669 1.640 2.641 0.636 2.771 0.766
p-Methylphenol 0.811 4.034 1.878 3.270 1.112 3.310 1.152
p-Nitrophenol 1.192 5.173 2.740 – – – –
p-Phenylphenol 0.802 3.777 1.939 2.762 0.948 2.807 0.992
p-t-Butylphenol 0.846 3.984 1.939 3.125 1.134 3.174 1.182
Phenol 0.901 4.291 1.994 3.648 1.338 3.700 1.390
MUE in direct predictions 0.104c 3.353 1.191 2.420 0.339 2.440 0.368
Linear regression data
Slope 0.302 0.478 0.219 0.329 0.216 0.370
Intercept (V) )0.380 –0.096 0.146 0.470 0.139 0.399
r 0.925 0.933 0.759 0.813 0.710 0.828
MUE in predictions from
linear regression

0.104c 0.037 0.036 0.051 0.039 0.046 0.033

aNeglecting thermal contributions to the gas-phase portion of the free-energy cycle of Fig. 1
bNeglecting differential solvation free energies in the free-energy cycle of Fig. 1
cError in the null hypothesis where Eo=0.907 V

222



the DFT levels employed for calculating IPs in related
molecules like the anilines just discussed [49], the only
realistic factor remaining would appear to be the ade-
quacy of the continuum approximation for computing
the differential solvation free energies. We speculate that
the oxidized phenols may well serve as such strong
hydrogen-bond donors, insofar as they are cationic, that
their specific interactions with a water molecule acting as
a hydrogen-bond acceptor may be significantly stronger
than those computed from the continuum model, which
by its construction considers hydrogen bonding in only
an average way over ‘‘typical’’ donor hydroxyl groups.

We have tested this suggestion with the simple model
of the bimolecular complex of phenol hydrogen-bonded
to a single water molecule. At the BPW91/cc-pVDZ//
BPW91/MIDI! level (corresponding to column 7 of
Table 2), the gas-phase oxidation potential drops from
3.70 to 3.01 V. However, differential aqueous solvation
of the supermolecule radical cation versus the neutral
species is smaller than for isolated phenol, so after
accounting for aqueous solvation at the SM5.42R level,
the oxidation potential of the supermolecule is com-
puted as 1.23 V, a reduction of 0.16 V compared with
the oxidation potential of isolated phenol. This reduc-
tion does reduce the error compared with experiment,
but only by about 30%. It may be, of course, that a
more sophisticated accounting of the entire first-solvent
shell would recover substantial additional specific sol-
vation effects.

To the extent that specific interactions exist, however,
one might expect them to introduce a fairly systematic
error into the continuum approximation. One way to
correct for this error is to regress the experimental data
on the computational predictions. As shown in Table 2,

this leads in every case to regression equations with
dramatically improved predictive accuracy. The MUE
from all six theoretical protocols—even those which
neglect to explicitly account for differential solvation
effects—is less than half the MUE associated with the
null hypothesis. The regression on the most complete
theoretical level, BPW91/cc-pVDZ//BPW91/MIDI! with
solvation effects included, provides a MUE of 0.033 V.
This regression is illustrated in Fig. 4. We note that the
largest outlier in the data is o-hydroxybenzoate; there
may be significant issues associated with internal
hydrogen bonding in this molecule.

Interestingly, the much more economical AM1 level
with solvation effects included once again provides al-
most equivalent predictive accuracy, 0.036 V. Since six
additional data are used in the AM1 regression that are
not present in the DFT regression (owing to difficulties
converging the open-shell Kohn–Sham determinants),
this result is particularly striking. We note, however,
that in every case the regression slope deviates signifi-
cantly from unity, indicating that the models underes-
timate substitution effects in an absolute sense.

Other predictions

We close this section by noting two other studies where
statistical methods were combined with relatively low
level computational methods to construct predictive
models having reasonable accuracy over focused data
sets. Rychnovsky et al. [60] measured the reversible
oxidation potentials in dichloromethane solvent of nine
different nitroxyl radicals derived from piperidine. They
then computed free energies of oxidation as the sum of
AM1 energies of oxidation and AM1-SM2 [61] aqueous
solvation free energies. When the experimental data
were regressed on these computed free energies of oxi-
dation in water, a MUE of 0.18 V in the predicted values
was obtained after removal of one data point where the
AM1 wave function showed high spin contamination.
Rychnovsky et al. noted that in the absence of
accounting for differential solvation effects with the
AM1-SM2 model, there was no correlation at all be-
tween the gas-phase IPs and the measured oxidation
potentials.

In a separate study, Wolfe et al. [41] trained a three-
layer neural network on 58 molecules having known
one-electron reduction potentials at pH 7. Input data to
the neural net were the AM1 electronic energies of the
neutrals and radical anions and their respective aqueous
free energies of solvation as computed at the AM1-SM2
level. After having trained the net to output the one-
electron reduction potential, it was used to predict Eo for
23 molecules not included in the training set—primarily
nitrofurans, nitrothiophenes, and nitroimidazoles. For
the 11 molecules within this set for which Eo had been
measured, the net’s mean predictive accuracy was about
0.07 V. As in our own work on the anilines and phenols,
Wolfe et al. observed that lowest unoccupied molecular

Fig. 4. Computed versus aqueous one-electron oxidation poten-
tials for substituted phenols. Computed values derive from the sum
of BPW91/cc-pVDZ//BPW91/MIDI! gas-phase electronic energies
and SM5.42R/BPW91/DZVP aqueous solvation free energies
(thermal contributions are neglected). The best-fit line and
regression equation are also shown
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orbital energies were moderately anti-correlated with Eo

(r=)0.69) and also that direct calculation from the
computed free energies in aqueous solution was feasible
from linear regression, the relevant equation being
(r=0.86)

Eo expt., Vð Þ ¼ 3.28Eo calc., Vð Þ þ 1.068 V. ð5Þ

This correlating equation represented a substantial
improvement over using simply the gas-phase EAs
computed at the AM1 level (r=0.67).

Applications to irreversible redox processes

Definition of equilibrium potentials

In some instances, the transfer of an electron to or from
a neutral precursor leaves the resulting radical ion on an
electronic ground-state surface that is dissociative. Fol-
lowing the electron-transfer event, which is rapid on the
time scale of nuclear motion, the radical ion relaxes
along the dissociative coordinate, leading to the scission
of one or more bonds. Typically, the energetics associ-
ated with this fragmentation are sufficiently exergonic
that the electron-transfer event is effectively irreversible.
As such, techniques like cyclic voltammetry cannot be
employed to define an equilibrium oxidation or reduc-
tion potential. Pulse radiolysis can occasionally be useful
as a method for the fast measurement of irreversible
potentials [31], but approaches along these lines are
necessarily nonequilibrium in nature.

An alternative way in which to define the oxidation
or reduction potential associated with a dissociative
process is simply to consider the equilibrium free-energy
change for the overall reaction. Thus, we may determine
the free energy associated with some generic process like

A sð Þ þ e�gð Þ ! B�sð Þ þ C�
sð Þ ð6Þ

either by direct measurement or by knowledge of the free
energies of formation of all of the reacting species. This
free-energy change may then be summed with the
absolute free-energy change of some particular reference
electrode, for example, the NHE, and the resulting DGo

employed in Eq. (2) to define the relative equilibrium
potential for the dissociative process.

One example of a dissociative electron-transfer reac-
tion is the reductive dehalogenation of a chloroalkane.
Such reactions are implicated in the breakdown of
halocarbons in the environment, where they are typically
found as residues from industrial processes. As the
environmental persistence of individual halocarbons has
been found to correlate with their relative reduction
potentials, there has been substantial interest in the
measurement and computation of these quantities [3,
62–66].

From a computational standpoint, there is little dif-
ference in the protocol employed for a reversible elec-

tron-transfer reaction compared with that employed for
an irreversible one. In either case, the free-energy cycle
of Fig. 1 is applicable; it is simply that for the irrevers-
ible reaction the product of a single electron transfer is
not a radical ion but rather a separated pair of one
radical and one ion. For two-electron transfers, two or
more closed-shell products can be generated depending
on the dissociations involved.

Several examples are illustrated in Fig. 5, together
with the one-electron reduction potential of the chlo-
rine atom, as computed by Patterson et al. [66]. In
these cases, electronic energies were computed at the
coupled-cluster level of theory including all single and
double excitations and a quasiperturbative estimate for
unlinked triple excitations [67–69] using the aug-cc-
pVDZ basis set [51, 70]. Geometries and thermal
contributions were computed at the BPW91/aug-cc-
pVDZ level, and differential solvation free energies
were computed at the SM5.42R/BPW91/DZVP level.
The values in Fig. 5 differ slightly from those in the
original publication [66] owing to the latter using the
older value of 4.44 V for the SHE; the more modern
value of 4.36 V is used here. For the three reductions
of hexachloroethane (HCE), the MUE in the reduc-
tion potentials is 0.06 V. The error for an aqueous
chlorine atom is larger, but this derives entirely from
the difficulty of computing the gas-phase EA of a
monatomic species without using a very large basis set
and level of electron electron.

Standard-state issues

HCE serves as a good example to illustrate some key
standard-state issues that affect the numerical values
associated with individual redox potentials. The first
point to note is the differing concentration conven-
tions associated with gas-phase species (like the elec-

Fig. 5. Experimental and computed aqueous one- and two-electron
reduction potentials of the chlorine atom and hexachloroethane.
See the text for details on the theoretical levels
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tron, or hydrogen gas in the NHE) and species in
solution. Since specification of standard-state concen-
tration affects the numerical value of the molar
translational entropy, careful attention must be paid
to this issue when comparing experimental and theo-
retical numbers to ensure equivalent conventions in all
cases. Lewis et al. [16, 71] provide a thorough dis-
cussion of this subject, and we recapitulate that here
only briefly.

The typical standard-state concentration for gas-
phase species is either 1 atm or 1 bar, while the typical
standard-state concentration for solutes in solution is
1 M. Hence, in computing the vertical legs of the free-
energy cycles in Fig. 1, it is important to ensure that
the change in standard-state concentration on going
from the gas phase to solution is included in the
solvation free energy for solutes. Most continuum
solvent models, since they focus only on the physical
terms coupling the solute with the solvent, compute
free energies of solvation assuming that the standard-
state concentration of the solute does not change. A
concentration change of 1 mol per 24.5 L (equivalent
to 1 atm for an ideal gas at 298 K) to 1 mol per 1 L
involves a free-energy change of +1.9 kcal mol)1.
For a reversible electron-transfer reaction like those in
Fig. 1, no error is introduced if this concentration
change cost is ignored in the free-energy cycle, because
with only one oxidized and one reduced species the
contribution cancels in the overall free-energy change
in solution (recall that the free electron is defined to
have a gas-phase standard state for both horizontal
legs, so there is no concentration change for this
species). However, for dissociative electron-transfer
reactions, it is quite possible that the number of
reactants may differ from the number of products, in
which case such cancellation will no longer be opera-
tive.

A separate issue is that experimental measurements
may sometimes be made in systems buffered to keep
particular reactant or product concentrations at some
value other than 1 M. Thus, for example, reductive
dechlorination potentials are nearly always measured
with the chloride ion concentration buffered to 10)3 M.
To address this in a systematic way, we note that free
energies computed using different concentration con-
ventions are related by

DGo0 ¼ DGo þ RT ln
Qo0

Qo

� �
; ð7Þ

where Q is the reaction quotient (i.e., the ratio of con-
centrations that appear in the equilibrium constant)
evaluated with all species at their standard-state con-
centrations and expressed so that the argument of the
logarithm is dimensionless. Thus, if we consider the final
reaction in Fig. 5, and take as the o standard state the
1 M convention for Cl) and take as the o¢ standard state
the 10)3 M convention, we see that the free energy in the
latter case is

DGo0 ¼ DGo þ RT ln

1 M C2Cl
�
5ð Þ 10�3 M Cl�ð Þ

1 M C2Cl6ð Þ 1 M e�ð Þ
1 M C2Cl

�
5ð Þ 1 M Cl�ð Þ

1 M C2Cl6ð Þ 1 M e�ð Þ

2
64

3
75: ð8Þ

The final term simplifies to RTln(10)3) or )4.13 kcal
mol)1.

Another typical experimental convention is to buffer
the aqueous solution to a particular pH, for example, 7.
Under those conditions, we would have for the first two-
electron reduction illustrated in Fig. 5

DGo0 ¼ DGo þ RT ln

1 M C2Cl5Hð Þ 10�3 M Cl�ð Þ
1 M C2Cl6ð Þ 10�7 M Hþð Þ 1 M e�ð Þ2

1 M C2Cl5Hð Þ 1 M Cl�ð Þ
1 M C2Cl6ð Þ 1 M Hþð Þ 1 M e�ð Þ2

2
64

3
75; ð9Þ

where the final term simplifies to RT ln(104) or
+5.51 kcal mol)1. It is to the values computed for the
o¢ standard state that twice the NHE free energy of re-
action is added in order to arrive at a final reduction free
energy to use in Eq. (2). All of the data in Fig. 5
(experimental and theoretical) are reported for the
standard state with pH 7 and a chloride concentration
of 10)3 M.

Solvated potential-energy surfaces

One of the key strengths of computational modeling is
that it can be applied not merely to the calculation of
thermochemical quantities associated with equilibrium
structures, but can also be used to map out interesting
regions on the molecular potential-energy surface.

Fig. 6. Reaction channels available to the pentachloroethyl anion
immediately following electron transfer
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Again, HCE provides an example of a situation where
theory can provide mechanistic insights not necessarily
obvious from experimental analysis of the reactants and
products of the reductive dechlorination reaction.

As illustrated in Fig. 6, Patterson et al. [66] deter-
mined that the vertically reduced pentachloroethyl
anion—i.e., the anion having the geometry of the
antecedent pentachloroethyl radical—could eject either
an a or a b chloride without barrier. The latter reac-
tion channel leads directly to a known intermediate in
the reductive dechlorination of HCE, namely per-
chloroethylene. The former channel, however, leads to
chloro(trichloromethyl)carbene. Patterson et al. deter-
mined that this carbene is a ground-state singlet hav-
ing as one reaction path available to it a 1,2-chloride
ion shift, this path generating perchloroethylene by a
different route. The rearrangement was computed to
have a modest free energy of activation in aqueous
solution, about 9 kcal mol)1. An alternative reaction
that would be expected to be kinetically competitive is
the trapping of the carbene by solvent water. The
resulting ylide can rearrange and hydrolyze to tri-
chloroacetaldehyde which, in the environment, would
be expected to be very rapidly oxidized to trichloro-
acetic acid. On the basis of these computational re-
sults, Patterson et al. [66] proposed this mechanistic
pathway to rationalize the observation of small
amounts of trichloroacetic acid in product mixtures
from reductive dechlorination of HCE.

Nonnenberg et al. [72] employed similar strategies to
illuminate the stereoselectivity observed in the reductive
dechlorination of trichloroethylene, which is observed to
give as the product of two-electron reduction primarily
Z-1,2-dichloroethylene and very little E or 1,1 product.
Their work was carried out with density functional
theory including solvation effects via the PCM model.

Concluding remarks

Continuum solvation models used in conjunction with
QM calculations can provide highly accurate predic-
tions of equilibrium one- and two-electron oxidation
and reduction potentials. This accuracy can be
achieved without additional approximations in cases
where suitably complete levels of electronic structure
theory can be employed to eliminate errors in the gas-
phase predictions of IPs or EAs provided solvation of
the oxidized and reduced species is well modeled by
the continuum approximation. Even in instances where
one or both of these conditions are not satisfied,
correlations between computed and experimental data
are often sufficiently high to permit useful linear or
other statistical relationships between the data to be
developed. Given the importance of oxidation and
reduction potentials for predicting chemical reactivity,
we expect steady growth in the application of com-
putational protocols like those outlined here to the
prediction of these quantities.
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